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Junyi Pengl, Jin Li3, Johan Rohdin', Lin Zhangz, Miroslav Hlavacek!, Old¥ich Plchot*

1Speech@FIT, Brno University of Technology, Czechia ?Johns Hopkins University, USA
3Department of EEE, The Hong Kong Polytechnic University, Hong Kong SRA

ABSTRACT

This paper presents the BUT submission to the WildSpoof
Challenge, focusing on the Spoofing-robust Automatic Speaker
Verification (SASV) track. We propose a SASV framework
designed to bridge the gap between general audio understand-
ing and specialized speech analysis. Our subsystem integrates
diverse Self-Supervised Learning front-ends ranging from
general audio models (e.g., Dasheng) to speech-specific en-
coders (e.g., WavLM). These representations are aggregated
via a lightweight Multi-Head Factorized Attention back-end
for corresponding subtasks. Furthermore, we introduce a
feature domain augmentation strategy based on Distribution
Uncertainty to explicitly model and mitigate the domain shift
caused by unseen neural vocoders and recording environ-
ments. By fusing these robust CM scores with state-of-the-art
ASV systems, our approach achieves superior minimization
of the a-DCFs and EERs.

Index Terms— Self-supervised learning, speaker verifi-
cation, anti-spoofing, fine-tuning

1. INTRODUCTION

Although previous challenges like ASVspoof [1 2] have
advanced the field of Spoofing-robust ASV (SASV), they
often rely on clean studio-recorded bona fide speech, creat-
ing a mismatch with real-world deployment scenarios where
noise and reverberation are ubiquitous. The newly introduced
WildSpoof Challenge [3|] and the SpoofCeleb dataset [4]]
address this gap by deriving bona fide speech from Vox-
Celebl [5] and generating spoofing attacks using TTS sys-
tems trained on the same noisy data.

The core task of WildSpoof is SASV, which requires a
system to accept only bona fide target trials while rejecting
both zero-effort impostors (non-target) and spoofing attacks.
This presents a core challenge: the system must be robust
to the “generation-recognition trade-oft” [4], effectively dis-
tinguishing forensic artifacts in noisy conditions where tradi-
tional detection cues might be masked.

In this paper, we present the BUT submission to the Wild-
Spoof SASV track. Our approach focuses on maximizing the
representation power of diverse Self-Supervised Learning
(SSL) models for both the anti-spoofing countermeasure

(CM) and automatic speaker verification (ASV) systems.
We hypothesize that large-scale pre-trained models encode
rich acoustic information that, when properly aggregated, is
resilient to environmental noise [6]. Crucially, we propose
a flexible framework designed to be compatible with both
general audio SSLs (e.g., Dasheng [7]) and speech-specific
SSLs (e.g., WavLM [8]], W2V2-BERT [9]). This allows us
to leverage the broad acoustic understanding of audio models
alongside the specialized phonetic features of speech models.
Moreover, we utilize a Multi-Head Factorized Attention
(MHFA) backend [10] augmented with a Distribution Un-
certainty (DSU) module [[11] to simulate unseen domain
shifts.

Our main contributions are summarized as follows:

* We demonstrate that general audio SSL models (e.g.,
Dasheng) provide complementary robustness to speech-
specific models when applied to noisy, in-the-wild
deepfake detection within our proposed framework.

* We integrate DSU-based feature augmentation into the
MHFA backend, significantly improving performance
on unseen attacks in the SpoofCeleb evaluation set.

2. PROPOSED METHOD

2.1. Data and Framework

The proposed system is developed within the WeDefense
framework'| an open-source toolkit specifically designed
for defending against fake audio. We utilize the official
SpoofCeleb dataset as the primary source for both train-
ing and developing our CM models. Furthermore, to en-
hance the speaker verification component, we incorporate the
VoxCeleb2-dev dataset for training our SV systems.

2.2. Hierarchical SSL Feature Extraction

SSL models, such as WavLM [8], HuBERT [12], and Dasheng [[7],

encode rich acoustic information across their layers. Lower
layers typically capture raw spectral details, while upper
layers encode more semantic or structural information. For
the task of deepfake detection, relying on the last layer is
often sub-optimal, as forensic artifacts introduced by neural

'https://github.com/z1in0/wedefense
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Table 1. ASV Performance Comparison (EER %) (spoofed trials are excluded.).

System Vox1-O Vox1-E Vox1-H SpoofCeleb-Dev (SV) SpoofCeleb-Eval (SV)
ResNet293 0.447 0.657 1.183 3.209 3.053
WavLM Large + MHFA  0.516 0.583 1.179 3.273 3.510
W2V2+BERT + MHFA 0.229 0.354 0.714 2.441 2.528

vocoders (e.g., phase discontinuities or metallic buzzing) are
often best preserved in intermediate representations.

Therefore, instead of using only the final-layer hidden
state, we employ MHFA, a lightweight backend that learns
layer-wise attention weights and computes a weighted sum of
all L transformer layers. Let X € RLXT*P be the output fea-
tures from all layers of the SSL encoder, where T is the num-
ber of frames and D is the feature dimension. We learn layer-
specific weights to aggregate these features dynamically, al-
lowing the backend to focus on the most discriminative level
of abstraction.

2.3. Multi-Head Factorized Attention (MHFA)

To effectively aggregate the temporal frame-level features
into a global utterance-level embedding, we employ the
MHFA mechanism [[10]. Unlike standard attention, which
uses a single linear projection, MHFA factorizes the aggrega-
tion process into two independent streams: a Key stream (K)
and a Value stream (V).

Specifically, we define two separate sets of learnable layer
weights, w* € R and w¥ € RL. These weights are normal-
ized via softmax to compute the weighted sum of the SSL
layer outputs Z;:

L L
Kfear = Z softmax(wlk)Zl, Vieat = Z softmax(w;') Z,
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These aggregated features are then projected into a lower di-
mension D, using linear layers W}, and W,:

K = Kfeatha V= eratVVv (@)
The attention weights A are computed from the Query stream,
while the content to be aggregated comes from the Value
stream. This factorization allows the model to learn where to
look using K independently of what to extract using V. For
H heads, the output is pooled as:

A = softmax (K Wy, dim = 1) 3)

Embedding = Pooling(V ® A) “4)

Finally, a fully connected layer maps the concatenated head
outputs to the final embedding e. This embedding is then pro-
cessed by the corresponding classification head based on the
specific task.

2.4. MHFA with DSU (Feature Domain Augmentation)

To tackle the challenge of unseen generators, we integrate
a Feature Domain Augmentation strategy directly into the
MHFA backend [11]], termed MHFA-DSU. This method is
based on the concept of Distribution Uncertainty (DSU),
which hypothesizes that domain shifts can be simulated by
perturbing the feature statistics (mean and variance) of the
training data.

We apply DSU specifically to the Value stream (Veqt)
before the linear projection. During training, with a proba-
bility p, we model the feature statistics as distributions rather
than deterministic values. For an input feature map x (cor-
responding to Vy.,), we compute the instance-level mean g
and standard deviation ¢ across the temporal dimension.

To simulate unseen domains, we assume the feature statis-
tics follow a Gaussian distribution. We sample uncertainty
perturbations ¢, and ¢, from a standard normal distribution

N(0,1):
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where ¥, and X, are variances that represent the uncertainty
of the mean and variance estimates, respectively. The aug-
mented feature  is obtained by re-parameterization:

T —p
g

j:

o+ (6)

This operation essentially “jitters” the global style and chan-
nel characteristics of the audio representation while preserv-
ing the local content, forcing the network to learn features
that are invariant to global statistical shifts caused by differ-
ent vocoders.

2.5. Calibration and Fusion

To fuse and calibate decisions from ASV and CM, our report
discussed two methods:

* Pre-fusion individual calibration: calibrate ASV and
CM scores separately with logistic regression, then fuse
(optionally followed by a final calibration).

* Joint calibration/fusion: jointly learn scale and bias for
ASV and CM within a single logistic fusion model (as
in Eq. 9 of our previous work [2]).



Table 2. Performance of different CM systems trained on SpoofCeleb. *DSU indicates Distribution Uncertainty augmentation.

System

SpoofCeleb Dev

SpoofCeleb Eval

OOD (ASVS5 Dev)

EER(%) minDCF EER(%) minDCF EER(%) minDCF
Speech-Specific SSL
WavLM Base+ 0.402 0.011 0.055 0.001 11.885 0.193
+ MUSAN/RIR 0.805 0.022 0.153 0.003 7.976 0.146
+ RawBoost 0.103 0.003 0.041 0.001 6.970 0.158
General Audio SSL
Mi-Dasheng-base (86M) 0.239 0.006 0.123 0.003 5.164 0.137
Mi-Dasheng-0.6B (600M) 0.176 0.004 0.050 0.001 3.122 0.089
+ DSU 0.213 0.005 0.078 0.002 1.777 0.051
Mi-Dasheng-1.2B (1200M) 0.265 0.006 0.090 0.002 1.625 0.047
+DSU 0.301 0.007 0.154 0.003 1.193 0.034
Baseline
ResNet18 0.204 0.005 0.185 0.005 12.090 0.177

3. EXPERIMENTS

3.1. Experimental Setup

Our models were implemented using PyTorch and trained on
AMD Instinct MI200 GPUs. The training process was config-
ured with a maximum of 8 epochs. We utilized the AdamW
optimizer with 81 = 0.9, B2 = 0.999, and a weight decay of
1.0 x 10~%. The batch size was set to 128.

We employed a differential learning rate strategy to fine-
tune the SSL front-end and the MHFA back-end effectively.
The base learning rate was initialized at 5.0 x 10~* and de-
cayed to a final learning rate of 1.0 x 10~° using a Cosine
Annealing scheduler. To prevent catastrophic forgetting of
the pre-trained representations, the learning rate for the SSL
front-end was scaled by a factor of 0.05 relative to the base
learning rate. A warmup period of 2 epochs was applied at
the beginning of training.

For the MHFA backend configuration, we set the number
of attention heads (head_nb) to 32, the embedding dimen-
sion (embed_dim) to 256, and the compression dimension
(compression_dim) to 128.

3.2. Results and Analysis
3.2.1. ASV

We first evaluate the performance of our ASV subsystems.
Table[I]summarizes the results of three different ASV models
on the standard VoxCeleb test sets (Vox1-O, Vox1-E, Vox1-
H) and the SpoofCeleb Development and Evaluation sets. All
models were trained on the VoxCeleb2-dev dataset with Ad-
ditive Angular Margin Softmax (AAM-Softmax) as loss func-
tion. And VoxCeleb2-dev is used for cosine score normaliza-
tion.

The W2V2+BERT + MHFA model demonstrates supe-
rior performance across all evaluation sets, significantly out-
performing the ResNet293 baseline and the WavLM Large
model. Specifically, on the challenging SpoofCeleb-Dev
and SpoofCeleb-Eval sets, which contain in-the-wild noisy
speech, W2V2+BERT + MHFA achieves the lowest EERs
of 2.440% and 2.250%, respectively. This highlights the
robustness of the MHFA backend combined with rich self-
supervised representations in handling diverse acoustic con-
ditions.

3.2.2. Anti-Spoofing

We evaluate various CM systems utilizing different SSL back-
bones and augmentation strategies, including WavLM Base+
and Mi-Dasheng models. For all of them, we utilize a stan-
dard Binary Cross-Entropy (BCE) loss to distinguish between
bonafide and spoof classes. Table 2] presents the results on
SpoofCeleb Dev/Eval sets and an out-of-domain (OOD) set
(ASVSpoof5 Dev).

General Audio vs. Speech SSLs: General audio models
(Dasheng) consistently outperform speech-specific models
(WavLM) and the ResNetl8 baseline on the OOD dataset.
For instance, Mi-Dasheng-0.6B achieves 3.122% EER on
ASV5 Dev compared to 11.885% for WavLM, demonstrating
superior generalization. We further observe that Mi-Dasheng-
0.6B slightly outperforms Mi-Dasheng-1.2B, suggesting that
larger model capacity does not necessarily yield better per-
formance, and selecting an appropriately sized backbone for
the data and task can be more effective.

Effectiveness of DSU: Although applying DSU augmen-
tation doesn’t show improvement on the in-domain data, it
shows significantly improved robustness on OOD data. For
Mi-Dasheng-0.6B, DSU reduces the OOD EER from 3.122%
to 1.777%. Similarly, for the 1.2B model, DSU improves



Table 3. Results of fusion and calibration on ASV and CM systems. (Only spoofceleb data are used for calibration)

CM ASV SASV Spoofceleb dev.
CM model calibrate on  ASV model calibrate on fusion/cali. on a-DCF
Dasheng 0.6B + MHFA + DSU  dev + eval W2V2+BERT + MHFA  dev + eval dev+eval 0.02747
Dasheng 0.6B + MHFA + DSU  no W2V2+BERT + MHFA  dev + eval dev+eval 0.02747
Dasheng 0.6B + MHFA dev + eval W2V2+BERT + MHFA  dev + eval dev+eval 0.02695

OOD EER from 1.625% to 1.193%, validating its efficacy in [6]
handling unseen domains.

3.3. Calibration and Fusion

Table [3| reports results for the two calibration strategies de- 71

scribed in Section2.5] We observe that calibrating component
scores before fusion versus calibrating the score joinlty dur- (8]
ing fusion yields similar performance. This suggests that sep-
arately calibrating the CM system is unnecessary if a joint cal-
ibration is applied. However, it remains unexplored whether
joint optimization can be numerically challenging without pre 1
individual calibration before fusion for more difficult sets or
for the ASV system which, due to the properties of cosine
scoring, has more constrained raw scores. [10]

4. CONCLUSION AND DISCUSSION

This report describes the BUT systems for the WildSpoof (t
Challenge 2025 SASV track. For ASV, we compare ResNet
with popular SSL backbones, and for CM, we use general-audio
SSL models (Dasheng) with DSU-based feature augmenta-
tion and a lightweight MHFA backend. For fusion/calibration,
we compare pre-fusion individual calibration and joint cal-
ibration/fusion. Results show that general-audio models
outperform speech-specific models and the ResNet18 base-
line on OOD data, DSU improves generalization, and pre- vs
post-fusion calibration performs similarly.

[12]
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